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Abstract

Three cylindrical applied-field magnetoplasmadynamic thrusters were tested with argon propellant over a

broad range of operating conditions to establish empirical scaling laws for thruster performance. Argon flow rates,

discharge currents, and applied-field strengths were varied between 0.025 and 0.14 g/s, 750 to 2000 A, and 0.034 to

0.20 T, respectively. The results showed that the thrust reached over five times the self-field value, and that thrust

increased linearly with the product of discharge current and applied-field strength and quadratically with the anode

radius. While increasing the propellant flow rate increased the thrust, it did not affect the rate of thrust increase with

applied-field strength, and at low propellant flow rates the self-field thrust approached 30% of the measured thrust.

The voltage increased linearly with applied-field strength but was insensitive to the discharge current. The rate of

voltage increase with applied-field strength was strongly dependent on anode radius. Thruster efficiency increased

monotonically with applied-field strength and propellant flow rate. Peak thruster efficiencies were insensitive to

changes in anode radius. Electrode power loss and thruster efficiency measurements showed that while the electrode

losses decreased with increasing anode radius the plasma losses increased. The opposite behaviors of electrode and

plasma losses demonstrates the need to identify ways of independendy controlling the thruster loss mechanisms.
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self-field thrust coefficient, N/A2

applied magnetic field strength, T

electron charge, C

acceleration of gravity, m/s 2

specific impulse, s

discharge currenL A

Boltzmann's constant, J/K

mass flow rate, g/s

anode length, m

cathode length, m

ionization power, W

power radiated to anode surface, W

power convected to anode surface, W

anode radius, m

cathode radius, m

thrust, N
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Tsf self-fieldthrust,N
Te electrtmtemperature,K
Va anodefallvoltage,V
Vd dischargevoltage,V
11 eff_iency
Tith thermalefficiency
_lf flowefficiency
Ixo pe_ility offree-space

anodeworkfunction,eV

Introduction

MamaetoplasmadynamicfMPD)thrustershavedemonstratedperformanceandpowerhandlingcapabilities
whichmake_emattractivefor useasprimarypropulsiononpilotedandroboticplanetaryandnear-Earth
missions,t,z Thruster efficiency and specific impulse have reached over 40 percent and 5000 seconds, respectively,

and steady-state thrusters have been tested at power levels ranging from 30 - 500 kW.3 While piloted planetar3'

missions will likely require power levels between one and ten megawatts, there is potential for nearer term

application of 100 kW class thrusters for robotic missions. In addition, facility limitations preclude immediate

testing of muiumegawatt steady-state thrusters, 4 forcing the development of detailed scaling models at submegawatt
power levels.

A t_Tical laboratory MPD thruster, shown schematically in Fig. 1, consists of a central, rod shaped cathode
with a coaxial, cylindrical anode. Propellant, injected through the insulating backplate, is heated, ionized, and

accelerated by the discharge current passing from anode to cathode and it's interactions with both the self-induced and

externally applied magnetic fields. MPD thruster research to date has focussed on self-field devices, wherein the

accelerating magnetic field is generated by the thruster discharge current.3 However, the demonstrated performance

levels of the_ devices at the power levels of interest is very poor, typically ranging between 5 and 10 percent

efficiency at specific impulses between 800 and 1500 seconds. Recent work has shown that application of a

solenoidal ma__'netic field to the thruster chamber increases the thruster performance in proportion to the strength of

the applied m%_etic field. 3,5 Efficiencies between 20 and 25 percent at specific impulses between 1500 and 4000

seconds have teen demonstrated.5 A systematic study of the effect of electrode geometry showed that, for a constant

argon flow rate of 0.1 g/s and a discharge current of 1000 A, the discharge voltage and thrust increased quadratically

with the anoae radius, linearly with applied-field strength, and inversely with the cathode radius. 5 However, that

work did not _,xklress the effect of either the propellant flow rate or the discharge current.

The purpose of this work is to develop applied-field MPD thruster scaling laws including the effects of

thruster geometry, applied magnetic field strength, propellant flow rate, and discharge current. The effect of varying

the discharge _rrent and propellant flow rate was studied for three of the geometries studied in Ref. 5. The need to

include several geometries is apparent from the complex coupling of plasma heating, ionization, and acceleration

phenomena occuring in MPD thrusters. That is, the effect of operating condition on thruster performance is likely

to depend on me thruster geometry. Following a description of the thrusters and experimental facility, performance

measurements for the three applied-field MPD thruster geometries shown in Fig. 1 are given for the operating

conditions lis;ed above. These measurements are then used to establish scaling laws for voltage, thrust, specific

impulse, and efficiency which are applicable to applied-field thrusters operated in the 100 kW power range. In
addition, the dam are compared with existing analytical models to establish dominant acceleration and Ix_wer loss

mechanisms. These results will not only serve as a guide for future experimental research, but will also be u_ful a.s

a data base w_:h which to compare the results of numerical simulations.
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ExperimentalApparatusandProcedures

Thruster and Magnet Assembly

All MPD thrusters tested consisted of a 0.64 cm radius, 7.6 cm long 2% thoriated tungsten cathode

surrounded by a coaxial 7.6 cm long copper anode. Three anode radii, 2.54, 3.81, and 5.1 cm, were tested. As

shown schematically in Fig. 1, both electrodes were water cooled, the anode via azimuthal passages in the wall, the

cathode via conduction up the base to a copper cathode clamp. Propellant was injected through a boron nitride

backplate via an 0.16 cm wide annulus surrounding the cathode and twenty-four 0.16 crn diameter holes at the mid-

radius between the cathode and anode. All gas seals were made using 0.05 cm thick graphite gaskets.

The thrusters were inserted into a 15.3 cm long solenoid for testing with an applied magnetic field. Two

magnet bore radii, 15.3 cm and 20.3 cm, were required to accommodate the three anode radii. The smaller magnet
was used with the 2.54 cm and 3.81 cm radius anodes, and the larger with the 7.6 cm anode. Magnetic field strength

calibrations showed that both magnets produced azimuthally uniform fields, with magnitudes of 1.66 x I0 -'_T/A and

8.48 x 10-5 T/A at the centerline of the magnet exit plane (also the thruster cathode tip) for the 15.3 cm and 20.3 cm

magnets, respectively.

Facility and Test Support Equipment

The MPD thruster test stand, shown in Fig. 2, was mounted in a 3 m diameter, 3 m long test port attached

to the main 7.6 m diameter. 21 m long vacuum tank via a 3 m diameter gate valve. The main chamber was

pumped by twenty 0.9 m diameter oil diffusion pumps backed by three roots blowers and two roughing pumps. The

facility pressure was kept below 0.07 Pa (5 x 10 -4 torr) during testing, which is low enough to ensure that ambient

gas entrainment did not affect the performance measurements.5

Thruster power was provided by a series-parallel ladder network of six welding supplies with an output

capability of up to 3000 A at 130 V. The applied-field magnet was powered by a single welding supply providing

up to 1500 A to the coil. Both supplies were isolated from ground. A 1400 V pulse applied between anode and

cathode was used to ignite the arc. Discharge voltage and current ripple was approximately 20% at a frequency of
about 600 Hz.

Cooling water was supplied to both the thruster and magnet using two closed loop heat exchangers, each

providing up to 0.47 l/sec. J'be water flow rate was measured using turbine flow meters which were calibrated at

regular intervals during the testing.

Propellant flow rates were measured using thermal conductivity type flow controllers with 2% precision. A

constant volume calibration system was regularly used to obtain an absolute measure of gauge accuracy. The

calibrations showed the propellant feed rates to be accurate to within 2%.

Thruster performance was determined from measurements of thrust, propellant flow rate, discharge power,

and electrode heat transfer. Thrust was measured using an inverted pendulum thrust stand with an oscillation

damping circuit, remote leveling apparatus, and an in situ calibration mechanism. As discussed in Ref. 5 and 6,

extensive calibration and testing showed the thrust stand error was less than 3%. Thruster discharge current was
measured using both shunts and Hall effect transducers. Current and voltage were continuously displayed on a set of

panel meters and simultaneously fed into a computerized data acquisition system. The electrode heat transfer was

measured calorimetrically by monitoring the cooling water temperature change and flow rate. Both of these

measurements were calibrated several times during the test series. The water flow rates were accurate to within 2%,



andthetemperaturerisetowithin+/- 0.5 oC. Due to the different temperature rises occuring across the anode and

cathode cooling channels and the strong dependence of the temperature rise on operating condition, the electrode

power measurement accuracy had to be calculated for each operating condition, though it typically was 3% for the
anode and 20% for the cathode.

PcrfQrmanCe Measurements

Specific impulse, efficiency, thermal efficiency, and flow efficiency were used as measures of thruster

performance. The specific impulse and efficiency, sometimes referred to as thrust efficiency, were calculated from:

T T 2

Isp = _gg T1- 2rhVdJ d (1)

and the thermal and flow efficiencies were obtained from:

= l - =n_.L
V, lJa rim (2)

The thermal efficiency is the fraction of the input power which is deposited into the plasma, and the flow efficiency

is a measure of the fraction of the power deposited into the plasma that is converted to thrust power. The

experimental measurement of thermal efficiency does not include power radiated from the cathode surface which

escaped through the exit plane, though it does include the fraction of this power which is absorbed by the anode.

The magnitude of this omission was estimated to be less than 3 kW by assuming that the entire discharge current

was thermionically emitted from the cathode to estimate the cathode surface temperature and using the known view

factors for cylindrical chambers. 7 Power absorbed by the boron nitride backplate is included in the thermal

efficiency because the backplate is cooled by conduction to both the cathode clamp and the anode (Fig. 1). These

assumptions yield a flow efficiency which is lower than the true value.

The voltage drop across the plasma was calculated by estimating the anode fall voltage and subtracting it

from the total measured discharge voltage. The anode fall voltage was estimated using the standard model for anode

power deposition: 8,9

Pa = Jo (Va + 5kTo + 4)) + Pr + P_onv
2e (3)

where the first term represents the contribution of the current carrying electrons, the second represents radiation from

the plasma and cathode, and the third term accounts for convective heat transfer from the hot flowing plasma.

Gallimore et al. 10 and Myers et al.9 showed that the dominant contributions to anode power were the first and
second terms, and that the cathode was the dominant source of radiant heat. Thus, the anode fall was calculated by

subtracting the estimated cathode radiation contribution from the calorimetrically measured anode power, dividing by

the discharge current, and subtracting 9.6 volts to account for the copper work function (4.6 V) and the electron

thermal energy (with Te = 2 eV).9 The plasma voltage drop was then estimated as the difference between the
discharge voltage and the anode fall voltage. The cathode fall voltage has been shown to be small for thermionically

emitting cathodes in MPD thrusters, l 1,12
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Experimental Results

Thruster performance measurements were attempted for the three anode radii at argon propellant flow rates of

0.05, 0.10, and 0.14 g/s, and at discharge currents of 750, 1000, 1250, 1500, and 2000 A as a function of applied

magnetic field strength. However, it was not possible to obtain steady operation at all operating conditions due to

either the onset of severe electrode erosion (evidenced by particulate emission) or limitations on the flow rate of the

electrode cooling water. In addition, attempts to operate without an applied-field always resulted in unstable

operation leading quickly to meltdown of the anode. In general, as the thruster size increased the propellant flow

rate had to be increased to maintain the same discharge current and applied-field strength range. Thus, the largest

stable operating range was observed with the 2.54 cm anode radius thruster operating at 0.10 g/s, and the Largest

anode, with a 5.1 cm radius, could not be operated without severe electrode erosion at a propellant flow rate of 0.05

g/s. The peak applied-field strengths decreased from 0.20 T with the 2.54 cm radius anode to 0.062 T with the 5.1

cm radius thruster as a result of anode cooling limitations. The data presented below, organized according to

performance parameter, are limited to operating conditions for which either the applied magnetic field or the

discharge current could be varied by a significant amount.

Discharge and Plasma Voltages

The effect of applied magnetic field strength and discharge current on the discharge voltage for the 2.54,

3.81, and 5.1 cm anode radii is shown in Figs. 3a - c. For all cases the voltage increased nearly linearly with

applied field strength, but the dependence on discharge current was not monotonic, and the effect of anode radius was
much larger than the effect of current level. Discharge voltages ranged from approximately 20 V with the 2.54 cm

radius thruster at the lowest applied field strength, to over 100 V with the 5.1 cm radius thruster with the highest

applied-field that could be used with that geometry. The effects of current level and anode radius are more clearly

shown in Table 1, which lists the slopes of the least-squares curve-fits to the discharge voltage vs. applied field

strength plots. Doubling the discharge current with the smallest anode radius thruster barely changed the Vd vs. B z

slope, but doubling the anode radius increased the slope by as much as a factor of five. It was not possible to

establish the quantitative dependence of the Va vs. Bz slope on either anode radius or current level. Increasing the

discharge current by 250 A generally increased the discharge voltage by between 2 and 10 V, with the magnitude of

the effect increasing with anode radius. The anomalous discharge voltage behavior observed with the 5.1 cm radius

anode at a discharge current of 750 A resulted from a change in anode fall voltage.9 To eliminate the superposition

of anode and plasma phenomena, plasma voltage drops were calculated using the procedure described above. Plasma

voltage drop estimates are shown in Figs. 4a - c for the same conditions described in Fig. 3, and the slopes of the

curves are given in Table 2. The results clearly show the large impact of the anode fall voltage. While the plasma

voltage drop increased linearly with applied field strength, the magnitudes were significantly below those of the

discharge voltage. The lowest plasma voltage drop was below 20 V and the highest was only 60 V. The rate of

increase in plasma voltage drop with applied field, given in Table 2, is over a factor of two below the rate of rise of

the discharge voltage, given in Table 1, for all operating conditions tested. In contrast to the results for the discharge

voltage, both the magnitudes and slopes of the plasma drops fbr the different current levels are nearly the same, with

only a slight increase in slope with increasing discharge current. It is clear that a large fraction of the effect observed

on the discharge voltage resulted from changes in the anode fall voltage. The effect of geometry was still quite large,

with the plasma voltage drop for the 5.1 cm anode 20 V higher than that for the 2.54 cm anode. The slopes for the

plasma voltage drop vs. applied field strength results are given in Table 2. While the slopes increased rapidly with

anode radius, no clear relationship could be identified between the slopes of the plasma voltage drop vs. applied-field

strength and the anode radius for all discharge currents. This result contrasts with that presented in a previous work,5

where a quadratic increase of discharge voltage with anode radius was reported.

To further characterize the effect of discharge current on the discharge and plasma voltage drops, a series of

tests were conducted at a constant applied field strength of 0.033 T. The results are shown in Figs. 5a and 5b.
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Increasingthedischargecurrentfrom750A to2000A resultedina5V riseindischargevoltagewiththe2.54cm
anode,buttheplasmavoltagedropdidnotriseatall. Similartrendsareevidentfortheotheranodesizes.Thedata
showthatthedominanteffectof increasingthedischargecurrentwastoslightlyincreasetheanodefallvoltage,an
effectdiscussedindetailinRef.9. Thevoltagerisewithanoderadiuswaslarge,thoughthequantitativerelationship
wasnotapparent.

Theeffectofargonpropellantflowrateonthedischargevoltageforadischargecurrentof 1000Aisshown
inFigs.6a- cforthe2.54,3.81,and5.1cmradiusanodes,respectively.Thedischargevoltagemagnitudeandrote
of increasewithappliedfieldstrengthincreasedwithdecreasingpropellantflowrate,thoughthebehaviorchanged
withanoderadius.Forthe2.54and3.81cmradiusanodestheVdvs.Bzslopesincreasedrapidlywithdecreasing
flowrate,butthisisnotobservedwiththe5.1cmradiusanode.Thesensitivityof theplasmavoltagedropvs.
magneticfieldslopeto themassflow rate, shown in Fig. 7a - c for the three anodes, was much smaller. This

result is confirmed by comparison of Figs. 8a and 8b, which show the discharge and plasma voltage drops as

functions of the discharge current for two mass flow rates with the 5.1 cm radius anode. While the discharge

voltage (Fig. 8a) increased approximately inversely with the mass flow rate, the rate of increase of the plasma

voltage drop was much smaller. These results reemphasize the importance of the anode fall voltage in the voltage

scaling characteristics of cylindrical 100 kW applied-field MPD thrusters.

Thrust and Specific Impulse

Thrust measurements as a function of applied magnetic field strength for discharge currents from 750 to

1500 A are shown in Figs. 9a - c for the 2.54, 3.81, and 5.1 cm radius anodes, respectively. Slopes for all least-

squares curve fits are given in Table 3. The data show that for these flow rates the thrust increased approximately

linearly with discharge current and quadratically with anode radius. The effect of propellant flow rate on thrust

behavior is shown in Figs. 10 a - c. For the smaller anode radius there was a substantial increase in thrust as the

propellant flow rate increases, though this effect diminishes for the larger thrusters. The rate of increase in thrust

with applied field strength was not significantly affected by the mass flow rate. This behavior changed, however,

when the discharge current and flow rate were varied for constant applied field. As shown in Fig. 1 la. for the 2.54
cm radius anode with a flow rate of 0.05 g/s the thrust increased quadratically, not linearly, with discharge current.

The self-induced magnetic field thrust, calculated from: 13

BoJ_ R
Tsf- |n (-_)

4re R c (4)

is also shown on the figure, and it is clear that it contributed significantly to the thrust levels at the lower propellant

flow rate. The quadratic behavior disappeared with either increasing mass flow rate or increasing anode radius due to

the relatively smaller contribution of the self-field thrust. This is clearly shown in Fig. 1 lb, where the thrust for the

5.1 cm radius anode is plotted as a function of the discharge current for two argon flow rates. For this case the self-

field thrust was always less than 25% of the measured thrust, and for low discharge currents its contribution dropped
to less than 10%.

The small effect of propellant flow rate on the rate of increase in thrust with applied field strength clearly

results in an inverse relationship between the specific impulse, defined by Eq. (1), and the flow rate. For the data

shown, a maximum specific impulse of 1900 s was obtained with the smallest anode radius at a propellant flow rate

of 0.05 g/s. Testing with this anode at a propellant flow rate of 0.025 g/s at a discharge current of 750 A yielded a

maximum Isp of 2400 s.5
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Efficiency

Efficiency measures the combined effects of the thrust and discharge voltage dependencies on geometry and

operating condition. Results are shown as a function of applied-field strength for three discharge currents using the

2.54 cm, 3.81 cm, and 5.1 cm radius anodes in Figs. 12a - c. The increase in propellant flow rate for the larger

thruster was required to achieve stable operation over the desired discharge current range. For all cases the efficiency

increased approximately linearly with applied magnetic field strength. As shown in Fig. 12a, the maximum

efficiency for the small anode was measured with 1000 A discharge. This was not true for either of the larger anode

radii, for which the efficiency increased monotonically with discharge current. This difference is more clearly shown

in Figs. 13a and b, in which the efficiencies for the 2.54 and 5.1 cm radius anodes are plotted as a function of

discharge current for a constant applied field strength of 0.034 T and two argon flow rates. While the efficiency for

both the 2.54 cm and 5.1 cm radius anodes increased with propellant flow rate, the dependence on discharge current

changed with anode size. For the smaller anode at 0.10 g/s there was a maximum efficiency at a discharge current of
- 1100 A, above which the efficiency decreased slightly, however, efficiency increased monotonically with discharge

current at the lower flow rate. With the large anode the efficiency increase with current was unaffected by propellant
flow rate.

The effect of propellant flow rate on the efficiency response to applied-field strength is shown in Figs. 14a -

c for the three anode radii. The effect of flow rate is quite large with the small anode, with an increase from 0.08 to

0.20 when the flow was increased from 0.05 to 0.10 g/s at low applied-field strengths (Fig. 14a). By contrast, the

same flow increase with the 3.81 cm anode had a negligible effect on efficiency (Fig. 14b), thou_ the increased flow

did increase the stable operating range of the thruster so as to achieve a higher maximum efficiency of 0.18. The

effect with the largest anode (Fig. 14c) was similar, with the dominant effect of propellant flow being an increase in

the stable operating range.

Flow Efficiency

The efficiency of 100 kW class MPD thrusters has been previously shown to be predominantly controlled
by anode power deposition. 5.9.10 This was confirmed in this work for a much broader set of operating conditions

by the large fraction of the discharge voltage which was accounted for by the anode fall voltage. While this result

clearly shows the need to concentrate on reducing the anode power loss, it also indicates that changes in anode power

deposition could be masking the behavior of other plasma power sinks. For this reason an attempt was made in this

work to isolate the efficiency with which power deposited into the plasma was converted to directed kinetic, or

thrust, power. This term, the flow efficiency, which increases as losses resulting from ionization, unrecovered

rotational (swirl) and thermal energy, divergence losses, and radiation are decreased, provides a measure of potential

thruster efficiency if anode losses can be eliminated.

Results for flow efficiency, defined by Eq. (2), are shown in Figs. 15a - c for the three anode radii for

several discharge currents. For the small anode (Fig. 15a) the flow efficiency first decreased with increasing applied-

field strength and then increased slightly. For both of the larger anodes (Figs. 15b and c) the flow efficiency

increased monotonically with applied-field strength. The maximum flo_v efficiency, 0.60, was obtained with the

2.54 cm radius anode at the minimum applied-field, though this value was nearly reached again at an applied-field of

0.20 T with a discharge current of 1250 A. The flow efficiency clearly decreased with increasing anode radius, with

maximum values of 0.60, 0.50, and 0.45 with the 2.54, 3.81, and 5.1 cm radius anodes, respectively. The flow

efficiency generally increased with increasing discharge current. The effect of propellant flow rate is illustrated in

Figs. 16a and b. For the same change in propellant flow rate, the response of the 3.81 and 5.1 cm radius anodes

was opposite, with the flow efficiency decreasing with increasing flow for the smaller anode, and increasing with the
larger anode. For all cases the flow efficiency increased monotonically with increasing applied-field strength, though

there appears to be a leveling off at the higher fields.



Discussion

The discharge voltage, plasma voltage drop, and thrust all increased linearly with applied magnetic field

strength for the geometries and operating conditions tested. However, the dependencies of these parameters on flow

rate, discharge current, and geometry were more complex. While the discharge voltage was not very sensitive to the

discharge current for a given anode size and flow rate, changes in discharge current had a strong effect on the

dependence of voltage to those parameters. Thus, in contrast to the work in Ref. 5 where a simple quadratic

dependence was found between the discharge voltage and the anode radius, this work indicates a much more complex

relationship in which the magnitude of the exponent depends on both the discharge current and the propellant flow

rate. Note that the increase with anode radius is always faster than linear, which is the rate predicted by Fradkin

using a simple homopolar generator model. 14 Only for a discharge current of 1000 A did the discharge voltage

appear to increase quadratically with anode radius. Separation of the plasma voltage drop did not eliminate this

problem, though it did reduce the dependence on the discharge current. The lack of sensitivity of voltage to discharge

current at a given applied field strength has been observed previously in both steady-state and quasi-steady thrusters. 14-

18 Increasing the propellant flow rate always decreased the discharge and plasma voltages, though again the
behavior did not follow a simple power relationship.

In contrast to the voltage behavior, the thrust scaling was well defined. For propellant flow rates of 0.10
and 0.14 g/s the thrust increased as:

T - JdBzRa 2 (5)

and the discrepancy at low flow rate (see Fig. 1 la) can be resolved by including the self-induced magnetic field thrust

term. Self-field acceleration appears to play a substantial role in the small applied-field thruster at low applied field
strengths and propellant flow rates. In addition, while the propellant flow rate did not greatly affect the thrust vs. Bz

slope (Fig. 10a - c), increasing the propellant flow rate can increase the magnitude of the thrust. This results in the
relation:

T = bJd z + BzJdRa 2 + f(Ra,m ) (6)

where the self-field thrust coefficient was defined in Eq. (4) and the third term indicates that the flow rate dependence

was a function of anode radius. The sensitivity to propellant flow rate clearly decreased with increasing anode

radius. The latter may result from a pressure thrust term, though it was not possible to prove this with the

available data. At constant flow rate, the fraction of thrust arising from pressure forces would likely decrease with
increasing anode radius due to the quadratic rise of the applied-field thrust. The thrust increase with BzJ d has been

reported previously, 14-18 though previous work had failed to resolve the self-field acceleration and propellant flow

rate dependence.

The observed lack of dependence of the geometric scaling on discharge current and flow rate indicates that it

is possible to incorporate into Eq. 6 the thrust dependence on anode length, cathode radius, and cathode length

established in Ref. 5. The final thrust scaling relationship is:

R_J,jBz
T = bJ_ 4 '

klLcRc
+ f(La,Ra,ria)

(7)

where the third term now also accounts for the observation in Ref. 5 that the thrust decreased for longer anodes, but

that the anode length did not affect the thrust vs. Bz slope.

While both thrust and discharge voltage rose linearly with applied field strength, the rate of thrust rise was

equal to or slightly greater than that for the voltage rise, resulting in an increase in efficiency with increasing field
strength. The insensitivity of the voltage to discharge current, combined with the linear rise in thrust with



dischargecurrent,resultedinhigherefficienciesforhigherdischargecurrents.Increasingthepropellantflow rate

generally increased the efficiency as a result of the combined increase in thrust and decrease in discharge voltage. As

discussed in Ref. 9, increasing the propellant flow rate reduced the anode power fraction, explaining in part the

increased efficiency.

The high values of flow efficiency, 0.5 to 0.6, indicate that if the anode power loss can be reduced high

efficiency MPD thrusters may be realizable. The behavior of the flow efficiency was complex, with discharge

current and flow rate dependencies which were a function of anode radius. Only with the largest anode did the flow

efficiency increase monotonically with applied-field strength and discharge current (Fig. 15c). With the smallest

anode both these trends were reversed at low field strengths, and with the 3.81 cm radius anode at low field strengths

the lowest discharge current resulted in the highest flow efficiency.

The decrease in flow efficiency with anode radius indicates that the magnitude of one or several of the

plasma loss mechanisms is increasing. Spectroscopic studies indicate that the argon plasma is nearly fully ionized

for most of the test conditions, t9 so that the ideal flow efficiency can be estimated from:

"Of .id

lrhI_pg 2

2riaI_pg 2 + P,

(8)

where losses from unrecovered rotational energy, thermal energy, divergence, and radiation, have been neglected.

Ideal and measured flow efficiencies are plotted vs. thruster specific impulse in Fig. 17. The measured values were

obtained for the three anode radii tested at a discharge current of 1250 A and an argon flow of 0.10 g/s. In an

attempt to identify the loss mechanism responsible for the low measured flow efficiencies, the magnitude of the lost

power was estimated for the three cases shown in the figure. Subtracting the anode and cathode water cooling powers
and the thrust power from the total input power for each thruster at the highest flow efficiency left 12.8, 19.3, and

30.6 kW unexplained for the 2.54, 3.81, and 5.1 cm anode radius thrusters, respectively. These large plasma power

losses clearly show that the problem did not lie in the assumed ionization state, as fully ionizing 0.10 g/s of argon

requires only 3.8 kW, and fully doubly ionizing the propellant stream, which spectroscopic data show was not

occuring, requires only 10 kW. The power levels involved are also too large to be accounted for by thermal energy

or plasma radiation,20 though cathode surface radiation might account for as much as 7 kW. 9 While cathode

radiation may reduce the plasma loss with the smallest anode to within measurement uncertainties, it clearly does not

account for the large power loss with the larger anodes. For those geometries it appears that either unrecovered

rotational energy or divergence losses control the frozen flow efficiency.

Anode power deposition studies reported in Refs. 5 and 9 show that increasing thruster size decreases the

fractional anode power loss, resulting in a higher thermal efficiency. The thrust and flow efficiencies presented in

this work show that for the geometries studied the flow efficiency decreases essentially at the same rate as the

thermal efficiency increases. To achieve high efficiency operation the physics of the two efficiencies must be

decoupled, so as to permit, for instance, an increase in size to reduce the anode power loss without compromising the

flow efficiency.

Conclusions

Performance measurements with three 100 kW class applied-field MPD thrusters were obtained at several

argon propellant flow rams, discharge currents, and applied magnetic field strengths to establish scaling relationships

for discharge voltage, plasma voltage drop, thrust, efficiency, and flow efficiency. The voltage, thrust, and

efficiency were found to increase linearly with applied field strength for all geometries and operating conditions, The

discharge and plasma voltage drops were found to depend only slightly on the discharge current and to decrease with

9



increasing propellant flow rate. Thrust was found to increase linearly with discharge current for operating conditions

where the applied-field thrust term dominated, and quadratically when the self-field term dominated at low propellant

flow rates with the smallest anode. The propellant flow rate increased the thrust level without affecting the rate of

thrust increase with applied-field strength, indicating the presence of a pressure thrust term which decreased in

importance with increasing thruster size. Measurements of the flow efficiency showed that for some cases over 60%

of the power deposited into the plasma was converted to thrust. Flow efficiency was found to decrease with

increasing anode radius, increase with increasing propellant flow rate, and generally increase with increasing discharge

current. An examination of the plasma power balance indicates that unrecovered rotational kinetic energy and

divergence losses may play a dominant role in the flow efficiency. The opposite behaviors of electrode and plasma

losses as a function of anode radius demonstrates the need to identify ways of independently controlling the thruster

loss mechanisms.
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Anode Radius Discharge Voltage vs. Bz Slope
(cm) (Vff)

1000 A 1250 A

274 2762.54

3.81

5.1

750A 1500A

282 298

435 655 540

2000 1141 1239

Table 1 - Discharge voltage vs. applied field strength slopes for 3 anode radii and 4 discharge currents. Argon flow

rate of 0.10 g/s.

Anode Radius

(cm)
750 A

2.54 137

Plasma Voltage Drop vs. Bz Slope
(vtr)

1000 A 1250 A 1500 A

143 128 131

285 270

735
3.81 197

5.1 494 646

Table 2 - Discharge -anode fall voltages vs. applied-field strength slopes for 3 anode radii and 4 discharge currents.
Argon flow rate of 0.10 g/s.

Anode Radius Thrust vs. Bz Slope
(cm) (N/T)

750 A 1000 A 1250 A 1500 A

2.54 4.2 6.0 7.6

3.81 9.3 13.0 15.1

5.1 17.0 23.0 27.0

Table 3 - Thrust vs. applied-field strength slopes for 3 anode radii and 4 discharge currents. Argon flow rate of 0.10
g/s for 2.54 and 3.81 cm anode, 0.14 for 5.1 cm radius anode.

12



cathode

clamp
(water cooled)

water Coddling
passages

\
anode (Cu)

outer injection holes

tuner injectmn annulus

"_x>ron nit.ride backplate

La -'-i

Fiberglas epoxy
insulator

Fig. 1 Schematic of applied-field MPD thrusters used in this test series. Applied-field

magnet not shown. Not to scale.

Vacuum ./_

feed

throughs -_\ =_._/

A _

_

i
t

t

lm

3 m test section ---,

\ 3 m gate valve
(._hown closed)

Reference structure -_

II

Calibration

mechanism _\

Displacement _ "E

transducer _ __;_

l_._
-+t--

,+l--

r Applied

i field magnett
I

1 rMPD

[_/ thruster

platform

I _ Pivoting

I structure

,,.-JId[ c- Primary

flexures

////////////7/////////////Floorline T_

Fig. 2 MPD thruster test sumd schcmauc.

13



>

e_

O

>

80

70

6O

50

40

30

20

0.00

Discharge CurrenL Amps /
o 750 /

o ,ooo
• 12so ////

• 1500 a

0.05 0.10 0.15 0.20

a. 2.5 cm radius anode.

>
6

>

,%

90

80

70

60

50

40 ¸

30

0.02

o 750 a/ /
a 1000 / /

A 1250 •

0.04 0.06 0.08 0.10 0.12 0.14

>

>

e-

i:5

b. 3.81 cm radius anode.

110

90
o 750 •

100 a 1000

8O

7O

60 o

5O

4O

0.02 0.03 0.04 0.05 0.06 0.07

Applied Field Strength, T

c. 5.1 cm radius anode.

Figure 3 - Discharge voltage vs. applied-field strength for 3 discharge currents with three anode radii. Argon flow

rate of 0.10 g/s.

14



>
d

O

>

E

5O

40

30

2O

I)isc_:,rgc Cuoem. A

o 750 ._

:r::o

]0 ! i i

0.00 0.05 O. 10 O. 15 0.20

a. 2.5 cm radius anode.

>
d

>.

5O

40

30 ¸

20

0,02

Dischart_e Current, A //

o 7s0 _// ol,
,, looo /

• I • ! • i • 1 • i •

0.04 0.06 0.08 0. I0 0.12 0.14

b. 3.81 cm radius anode.

Fig. 4

of 0.10 g/s.

70

Discharge Current. A /
i

o 750 /"

D lO00 /I/" /

60

>
d

> 50

40

30 ....

0.02 0.03 0.04 0.05 0.06 0.07

Applied Field Strength, T

c. 5.1 cm radius anode.

Plasma voltagc vs. applied-field strength for 3 discharge currents with three anode radii.

15

Argon flow rate



o"
Ot_

O

>

_0

e-

8O

70

60

5O

4O

30

20

10
50O

!

1000

Anode Radius. cm

o 5.1
n 3.81
A 2.54

13

12

A

A A A

i • • • !

1500 2000

Discharge Current, A

2500

a. Discharge voltage

;>

M
o

;>

5O

40

3O

2O

8

B It a a

A A A A

Anode Radius. cm

o 5.1

t: 3.81

" 2.54

10 , • • • • , , • •
500 1000 1500 2000 2500

Discharge Current, A

b. Plasma volulgc

Fig. 5 Discharge and plasma voltages vs. discharge current for 3 anode radii at an argon flow rate of 0.10 g/s.
Applied magnetic field strength of 0.034 T.

16



>

t_
,,...,
O

>

A-

>

t_

>

r-

._8

7O

60

50

40

30 ¸

90

t.05 0.10 0.15 0.20

80

70

60

50

40

3ot
0.02 0.04

a. 2.54 cm anode radius

100

o 0.I0 7"
m 0.14

0.06 0.08 0.10 0.12 0.14

90

>
6 80

>
_. 7o
r-

r, 60

50

40
0.02

b. 3.81 cm anode radius

o oy /

0.03 0.04 0.05 0.06 0.07 0.08

Applied Field Strength, T

C. 5.1 cm anode radius

Fig. 6 Discharge voltage vs. applied field su'ength for three anode radii at two argon flow rates
and a discharge current of 1000 A.

17



c

v

-2

=-

>

4O

30"

20

10

5O

40

30

/./

o 005 / /
0 0.1

i ! i

,.00 0.05 0.10 0.15 0.20

a. 2.54 cm anodc radius

°°i,° / /

20 . , . l • , , ,
0.02 0,04 0.06 0.08 0.10 0.12 0,14

b. 3.81 cm anode radius

>

>
.7:

7O

60

5O

4O

30
0.02 0.03 0.04 0.05 0.06 0.07 0.08

Applied Field Strength, T

c. 5.1 cm anode radius

Fig. 7 Plasma voltage vs. applied Iietd strength Ior three anode radii at two argon flow rates and a discharge current
of I000 A.

18



>
_5

5
O

e3

e--
M

7O

60

50

8

0
0

0

Argon Flow Rate. g/s

o 0.10

u 0.14

ra

D []

40 .... • ' '

600 800 1000 1200 1400 1600

Discharge Current, A

a. Discharge voltage

;>
d

>

-7.

44

42

40

38

36

o 0.10
u 0.14 O

0
0

0
0

rl

m

D r_
rl

34 . n , , , . ,

600 800 1000 1200 1400 1600

Discharge Current, A

b. Plasma voltage

Fig. 8 Discharge and plasma voltages vs. discharge current for the 5.1 cm radius anode at two argon flow rates with

an applied field strength of 0.034 T.

19



z

e-

[-

z

2
l-,

z

2.0

1.5

1.0

0.5

3.0

2.5

2.0

1.5

1.0

a. 2.54 cm anode radius, 0.10 g/s argon

o 750

°,ooo / /

1.02 0.04 0.06 0.08 0.10 0.12 0.14

b. 3.81 cm anode radius, 0.10 g/s argon

° i_ / /
• 125o / /
• ,5_ /t/, /

).02 0.03 0.04 0.05 0.06 0.07 0.08

Applied Field Strength, T

Fig. 9

c. 5.1 cm anode radius, 0.14 g/s argon

Thrust vs. applied field strength for the three anode radii at several discharge currents.

20



X

e-.

1-..-

20

1.5

1.0'

05

° °i°5 7 /

0,0 I _

0,00 0.05 O. 10 O. 15 0.20

X

v;
E

a,-

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.02

a. 2.54 cm anode radius

o 0.05 /

0.04 0.06 0.08 0.10 0.12 0.14

Fig. 10

A,

Z

E
#

2.5

2.0

1.5

1.0

0.02

b. 3.81 cm anode radius

J

o 0.10 /
n 0.14

i

0.03 0.04 0.05 0.06 0.07 0.08

Applied Field Strength, T

c. 5.1 cm anode radius

Thrust vs. applied field strength Ior the three anode radii at 2 argon flow rates.

21
Discharge current of 1000



Z

2
e-

l--,

1.50

1.25

1.00

0.75

0.50

0.25

0.00
500

J
Argon Flow Rate. _s

o oo5 /" /
I:l 0.10 _/

! ! II

1000 1500 2000 2500

Discharge Current, A

a. 2.54 cm an(×tc radius

Z

.=
¢.,.

t-

2.0

1.5

1.0

0.5

0.0
600

Argon l-low Rate. g/s j

o o.lo _ j
o o.1,_, ., _

I ! I i

800 1000 1200 1400 1600

Discharge Current, A

b. 5.1 cm anode radius

Fig. 11 Thrust vs. discharge current for two anode radii at 2 argon flow rates. Calculated self-field thrust also

shown. Applied field strength of 0.034 T.

22



0.26 T Dischzr;ze Current. AmDS

024] o _ -: .,/"//

°.,°]

0"141

0.12 I , , ,
0.00 0.05 O. 10 0.15 0.20

a. 2.54 cm radius, 0.10 g/s argon

g,

"O

tn

0.20

0.18

0.16

0.14

0.12

0.10 1

0.08 t

0.06 t'
0.02

olooo / / /

o

• I " I " I " I " I

0.04 0.06 0.08 0.10 0.12 0.14

b. 3.81 cm radius, 0.10 g/s argon

.o
O

0.20

0.18

0.16

0.14

0.12

0.10
b.02

Y
' ! - ! • t " I "

0.03 0.04 0.05 0.06

Applied Field Strength, T

!

0.07 _.08

c. 5.1 cm radius, 0.14 g/s argon

Figure 12 - Efficiency vs. applied field strength for 3 anode radii and several discharge currents.

23



¢o

.o

_C
to

0.20

0.15

0.10

0.05

500

rl

° 8 °
° rl

O

o o o 0.05
O

t_ 0.10

1000 1500 2000 2500

Discharge Current, A

a. 2.54 cm radius

t-

0.16

0.14

0.12

0.10

0.08

o 0.10
m 0.14

121

13
0

0

0

°

8

I " I I I

i00 800 1000 1200 1400 1600

Discharge Current, A

b. 5.1 cm radius

Figure 13 - Efficiency vs. discharge current for 2 anode radii at 2 propellant flow rates. Applied field strength of
0.034 T.

24



0.3

0.2

6

0.1

o 0.05

n 0.1

0,0 i I |

0.00 0.05 0.I0 0.15 0.20

*O

a. 2.54 cm radius

0.20_ //_n
0.181 Ax_onFlowRate._S

I o o.os / /
0.16"1

0.14

0.12

0.10

0.08

0.06

0.02 0.04 0.06 0.08 O.10 O.12 O.14

0.20

0.18

0.16'
L_

"Po
E

0.14

0.12

0.10'

0.08
0.02

b. 3.81 cm radius

fo 0.10

I

0.03 0.04 0.05 0.06 0.07 0.08

Applied Field Strength, T

c. 5.1 cm radius

Fig. 14 Efficiency vs. applied field strength for 3 anode radii at 2 propellant flow rates with
a discharge current of 1000 A.

25



¢.a
t-

.o

t_.

_o
t_

t-.

o

o
ta..

E

O

0.7

0.6

0.5

0.4

0.3

0.00

0.6

0.5

0.4

0.3

I_am_,_rx_7_ma,_

o 750

[] 1250
• 1500

[]

D

0

0
0

0

a.

!

0.10

2.54 cm radius, 0.10 g/s

i

0.20

o 750

l_ 1000

• 1250

i]
a

o

o •

.2 • i - ! • i , ! . i

0.02 0.0= 0.06 0.08 0.10 0.12 0.14

0.5

0.4

0.3

b. 3.81 cm radius, 0.I0 g/s

O

• 0
• 0

0
0

0

0

o 750

[] 1000

• 1250

• 1500

O

0,2 • i - ! - i - ! - i -

0.02 0.03 0.04 0.05 0.06 0.07 0.08

Applied Field Strength, T

c. 5.1 cm radius, 0.14 g/s

Figure 15 - Flow efficiency vs. applied field strength for 3 anode radii and several discharge currents.

26



r,
.oa

N

0.6

0.5

0.4

0.3

o 0.10
o 0.14

o
o

0

0
ra

[3
0

0

0

I " I " I I ' I

0.04 0.06 0.08 0.10 0.12 0.14

Applied Field Strength, T

a. 3.81 cm

t-

._o
L_

c
,g..

0.5

0.4

0.3

o 0.10
0 0.14

0

0 0

0
n

0

O

0

0

.2 . i 1 i • I " ! " I

0.02 0.03 0.04 0.05 0.06 0.07 0.08

Applied Field Strength, T

b. 5.1cm

Fig. 16 Flow efficiency vs. applied field strength for 2 anode radii at two argon flow rotes of 0.10

and 0.14 g/s. 1000 A discharge current.

27



¢.,)
c-

t..)

Id.,

1.0

0.8

0.6

0.4

Anod_ Radius. cm

o 2.54

[] 3.81

A 5._

_ 0 0 00

/ B

t

0.2 I I I

500 1000 1500 2000 2500

Specific Impulse, s

Fig. 17 Ideal and measured flow efficiency vs. specific impulse. Three anode radii, 1250 A discharge current,
and 0.10 g/s argon.

28





Form Approved

REPORT DOCUMENTATION PAGE OMBNo 0Z04-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect o1 this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and 1o the Office of Management and Budget, Paperwork Reduction Proiect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1992

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Scaling of 100 kW Class Applied-Field MPD Thrusters

6. AUTHOR(S)

Roger M. Myers

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES)

Sverdrup Technology, Inc.

Lewis Research Center Group

2001 Aerospace Parkway

Brook Park, Ohio 44142

9_ SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135 -3191

3. REPORT TYPE AND DATES COVERED

Final Contractor Report

WU-506-42-31

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-7405

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-190791

AIAA-92-3462

11. SUPPLEMENTARY NOTES

Project Manager, James S. Sovey, (216) 433-7454.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 20, 75

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Three cylindrical applied-field magnetoplasmadynamic thrusters were tested with argon propellant over a broad range of

operating conditions to establish empirical scaling laws for thruster performance. Argon flow rates, discharge currents,

and applied-field strengths were varied between 0.025 and 0.14 g/s, 750 to 2000 A, and 0.034 to 0.20 T, respectively.

The results showed that the thrust reached over five times the self-field value, and that thrust increased linearly with the

product of discharge current and applied-field strength and quadratically with the anode radius. While increasing the

propellant flow rate increased the thrust, it did not affect the rate of thrust increase with applied-field strength, and at low

propellant flow rates the self-field thrust approached 30% of the measured thrust. The voltage increased linearly with

applied-field strength was strongly dependent on anode radius. Thruster efficiency increased monotonically with applied-

field strength and propellant flow rate. Peak thruster efficiencies were insensitive to changes in anode radius. Electrode

power loss and thruster efficiency measurements showed that while the electrode losses decreased with increasing anode

radius the plasma losses increased. The opposite behaviors of electrode and plasma losses demonstrates the need to

identify ways of independently controlling the thruster loss mechanisms.

14. SUBJECT TERMS

Electric propulsion; Plasma dynamics; Nuclear propulsion

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

30
16. PRICE CODE

gO3
2Q. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18

298-1 O2


